用户手册 User's Guide

Rev.A 适用于 Rev.A1.03 以上版本

AT4050/40100/40150/40200

多路电压测试仪

50 通道/100 通道/150 通道/200 通道 并行测量 采样速率: 10ms(全部通道) 最小分辨率: 0.01mV

常州安柏精密仪器有限公司

Applent Instruments Ltd. 江苏省常州市武进区漕溪路 9 号 14 幢 电话: 0519-88805550

http://www.anbai.cn

销售服务电子邮件: <u>sales@applent.com</u> 技术支持电子邮件: <u>tech@applent.com</u> ©2005-2024 Applent Instruments Ltd.

图例说明

安全须知

	当你发现有以下不正常情形发生,请立即终止操作并断开电源线。立刻与安柏仪器销售部联系维修。否		
	则将会引起火灾或对操作者有潜在的触电危险。		
	● 仪器操作异常。		
N	● 操作中仪器产生反常噪音、异味、烟或闪光。		
	● 操作过程中,仪器产生高温或电击。		
	● 电源线、电源开关或电源插座损坏。		
	● 杂质或液体流入仪器。		
	免责声明		
	用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条款而造成的人身安全和		
	财产损失,安柏仪器将不承担任何责任。		
	为防止电击危险,请连接好电源地线。		
	不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。在此类环境使用任何电子设备,都是对人身		
	招山太道明书指宁的方式使用似器。似器低担供的保护措施修生效		
	但山华妩明节泪走的刀式使用汉裔,汉裔別旋铁的沐疗泪爬付天然。		

	图例说明.		
	安全须知.		
	目录		4
	插图目录.		7
	表格目录.		8
1.	安装和设	置向导	9
	1.1	装箱清单	9
	1.2	电源要求	9
	1.3	操作环境	9
	1.4	清洗	9
2.	概述		
	2.1	引言	10
	2.2	主要功能	11
	2.2.1	量程	11
	2.2.2	测试速度	11
	2.2.3	触发方式	11
	2.2.4	基本准确度	11
	2.2.5	设置	11
	2.2.6	接口	11
3.	开始		
	3.1	认识前面板	
	3.1.1	前面板描述	
	3.2	认识后面板	
	3.3	测试端	13
	3.4	上电启动	15
	3.4.1	开机	15
	3.4.2	预热	15
	3.4.3	运行状态	15
4.	远程通讯		
	4.1	USB-VCOM	16
	4.2	局域网接口(LAN)	16
	4.3	RS-232C	16
	4.3.1	RS232C 连接	
	4.3.2	默认的通信设置:	17
	4.3.3	后面板设置为 RS-232C 通讯接口	17
	4.4	RS-485 连接	
	4.4.1	后面板设置为 RS-485 通讯接口	
	4.5	通讯协议	18
	4.5.1	SCPI 语言	
5.	设置和 SC	CPI 命令参考	
	5.1	命令串解析	19
	5.1.1	命令解析规则	19

	5.1.2	符号约定和定义	19
	5.1.3	命令树结构	20
	5.2	命令和参数	20
	5.2.1	命令	20
	5.2.2	参数	20
	5.2.3	分隔符	21
	5.2.4	错误码	21
	5.3	SCPI 多机通讯	
	5.4	命令参考	
	5.5	TRIGger 触发设置	
	5.5.1	TRIGger:SOURce	
	5.6	SAMPle 测试速度设置	
	5.6.1	SAMPle[:SPEED(RATE)] 测试速度设置	23
	5.6.2	SAMPle:FILTER(LINE) 工频设置	23
	5.7	LAN 局域网设置	23
	5.7.1	LAN? 查询当前仪器局域网设置	24
	5.7.2	LAN:IP 设置 ip 地址	
	5.7.3	LAN:PORT 设置端口	
	5.7.4	LAN:GATE 设置网关地址	25
	5.7.5	LAN:MASK 设置子网掩码	25
	5.8	RS232/RS485 通讯设置	
	5.8.1	波特率设置【BAUD】	
	5.8.2	通讯协议设置【PROTocol】	
	5.9	获取测量数据【FETCh?】	
	5.10	*TRG 触发并返回测量结果子系统	
	5.11	IDN? 子系统	28
	5.12	ERRor 子系统	28
6.	Modbus	(RTU)通讯协议	
	6.1	数据格式	
	6.1.1	站号	
	6.1.2	指令帧	
	6.1.3	CRC-16 计算方法	
	6.1.4	响应帧	32
	6.1.5	无响应	
	6.1.6	错误码	
	6.2	功能码	
	6.3	寄存器	
	6.4	读出多个寄存器	
	6.5	写入多个寄存器	
	6.6	回波测试	35
7.	Modbus	(RTU) 指令集	
	7.1	寄存器品览	37
	7.2	获取测量数据	
	7.2.1	获取测量结果,整数类型【1000】	
	7.2.2	获取测量结果,浮点数类型【2000】	

8.	规格		39
	8.1	技术指标	39
	8.2	一般规格	39
	8.3	外形尺寸	40

插图目录

冬	3-1前面板	12
冬	3-2 后面板	12
冬	3-3 测试端定义	13
冬	3-4 工作指示灯定义	15
冬	4-1 后面板上 DB-9 插座	17
冬	4-2 后面板上的远程控制 RS232C 拨码开关位置	17
冬	4-3 后面板上的远程控制 RS485 拨码开关位置	. 18
冬	5-1 命令树结构	. 20
冬	5-2 TRIGger 子系统树	. 22
冬	5-3 SAMPle 子系统树	. 22
冬	5-4 LAN 设置	. 24
冬	5-5 查看当前局域网环境-默认网关	. 25
冬	5-6 查看当前局域网环境-子网掩码	. 26
冬	5-7 UART 设置树	. 26
冬	5-8 FETC?子系统树	.28
冬	5-9 IDN? 子系统树	.28
冬	6-1 站号设置	.30
冬	6-2 Modbus 指令帧	31
冬	6-3 Modbus 附加 CRC-16 值	. 32
冬	6-4 正常响应帧	. 32
冬	6-5 异常响应帧	. 32
冬	6-6 读出多个寄存器(0x03)	. 34
冬	6-7 读出多个寄存器(0x03)响应帧	. 34
冬	6-8 写入多个寄存器(0x10)	. 34
冬	6-9 写入多个寄存器(0x10)响应帧	. 35
冬	6-10 回波测试(0x08)	.35
冬	8-1 外形尺寸	.40

表格目录

表	-1 前面板功能描述	12
表	-2 前面板功能描述	12
表	-3 (M1) CH1~CH50 接线表	13
表	-4 (M2) CH51~CH100 接线表	14
表	-5 (M3) CH101~CH150 接线表	14
表	-6 (M4) CH151~CH200 接线表	15
表	-1 RS-232 标准的最小子集	17
表	-1 倍率缩写	21
表	-1 拨码开关真值表	30
表	-2 指令帧说明	31
表	-3 异常响应帧说明	32
表	-4 错误码说明	. 33
表	-5 功能码	. 33
表	-6 读出多个寄存器	34
表	-7 写入多个寄存器	. 35
表	-1 寄存器总览	37

1. 安装和设置向导

感谢您购买我公司的产品!使用前请仔细阅读本章。在本章您将了解到以下内容:

- 主要功能装箱清单
- 电源要求
- 操作环境
- 清洗

1.1 装箱清单

正式使用仪器前请首先:

1. 检查产品的外观是否有破损、刮伤等不良现象;

2. 对照仪器装箱清单检查仪器附件是否有遗失。

如有破损或附件不足,请立即与安柏仪器销售部或销售商联系。

1.2 电源要求

AT40200 系列只能在以下电源条件使用:

电压: 100~240VAC (1±10%)

频率: 50Hz/60Hz (1±10%)

警告:

警告:

电击危险,请连接好电源地线 如果用户更换了电源线,请确保该电源线的地可靠连接。

1.3 操作环境

AT40200 系列必须在下列环境条件下使用:

温度:0℃~55°C, 湿度:在 23℃ 小于 70%RH

1.4 清洗

为了防止电击危险,在清洗前请将电源线拔下。 请使用干净布蘸少许清水对外壳和面板进行清洗。 不可清洁仪器内部。

不可使用用溶剂(酒精或汽油等)对仪器进行清洗。

2. 概述

本章您将了解到以下内容:

- 引言
- 主要功能

2.1 引言

感谢您购买 AT40200 系列多路电压测试仪。

AT40200 系列多路电压测试仪,采用高性能 ARM9 微处理器控制的全自动实时检测的微型台式仪器,测量范围-5.00000V~+5.00000V,准确度: 0.01%(AT40200A),测量速度: 105 次/秒@全通道。

仪器使用了安柏原创设计的并行测量技术,结合优秀的小信号采样技术,使得 AT40200 系列每通道测 量时间缩短为 1ms 以下,所有 200 通道仅需 10ms 即可测量完成。超高速的采样速率下,仍然可以达到 0.05%的准确度,0.0001V 的分辨率。

仪器标配 USB2.0 的 VCOM 接口,接口通讯速率, 200 通道数据仅需 0.1ms。

仪器标配百兆 LAN 接口, 高效传输数据。

仪器标配 RS-232 接口,支持波特率 115200bps,使用 SCPI(Standard Command for Programmable Instrument 可程控仪器标准命令集)和 Modbus RTU 协议与计算机、PLC 或 WINCE 设备进行通讯, 高效完成远程控制和数据采集功能。

仪器标配 RS-485 接口,支持 SCPI 和 Modbus RTU 协议,非常方便地与 PLC 通讯。

AT40200 系列有多种型号可供选择:

型号	通道数	准确度	最小分辨率
AT4050	50 通道	0.05%	0.01mV
AT40100	100 通道	0.05%	0.01mV
AT40150	150 通道	0.05%	0.01mV
AT40200	200 通道	0.05%	0.01mV

AT40200A 系列为高性能版本:

AT4050A	50 通道	0.01%	0.01mV
AT40100A	100 通道	0.01%	0.01mV
AT40150A	150 通道	0.01%	0.01mV
AT40200A	200 通道	0.01%	0.01mV

 \bigcirc

概述 1

2.2 主要功能

2.2.1 量程

量程: -5.00000V~+5.00000V。(可出厂配置其它量程)

2.2.2 测试速度

仪器分四档速度:	慢速、	中速、	快速和高速。
慢速:	2 次/秒	@全通	道
中速:	4.6次/	秒@全)	通道
快速:	27 次/秋	少@全通	道
高速:	105 次/	秒@全	通道

2.2.3 触发方式

内部触发:内部自动循环测试,上位机使用指令:fetch?实时获取测量数据。 远程触发:使用远程指令触发一次扫描测量,上位机使用指令:trg执行一次测量并返回数据。

注意!

使用远程触发时,上位机发送 trg 指令后,需要足够的时间等待仪器测量完成,才能获取到数据,例如,慢速时至少等待 500ms 的测量时间来等待数据返回,务必根据测量速度来设置 TIMEOUT 时间。

2.2.4 基本准确度

慢速:	0.01% (AT40200A) 0.05%(AT40200)
中速:	0.01% (AT40200A) 0.05%(AT40200)
快速:	0.05% (AT40200A) 0.05%(AT40200)
高速:	0.1% (AT40200A) 0.1%(AT40200)

2.2.5 设置

- 1. 测试速度设置
- 2. 触发方式设置
- 3. 局域网设置,包括 IP/网关/子网掩码/端口设置。
- 4. RS232/RS485 波特率设置。

2.2.6 接口

USB-VCOM 接口:

标配接口,开机自动开启。支持 USB2.0 的通讯速率,Windows10/11 即插即用,无需驱动程序。 LAN 接口: 标配接口,开机自动开启。百兆局域网接口。 RS-232 接口: 支持最大 115200bps 的波特率,兼容 SCPI 协议和 Modbus RTU 协议。 后面板拨码开关进行预置使能。 RS-485 接口: 支持最大 115200bps 的波特率,使用 Modbus RTU 通讯协议。

后面板拨码开关进行预置使能。

3.开始

本章您将了解到以下内容:

- 认识前面板——包括按键和测试端子的介绍。
- 后面板——介绍电源和接口信息。
- 上电启动——包括上电自检过程、仪器缺省值和仪器预热时间。

3.1 认识前面板

3.1.1 前面板描述

图 3-1 前面板

表 3-1 前面板功能描述

S 1=1 -	
序号	功能
1	电源开关: O-关/I-开
2	电源指示灯
3	*TRG,触发指示灯,所有通道测量一次闪烁一次
4	STATUS,触发状态指示,总线触发(BUS)时,指示灯点亮。

3.2 认识后面板

图 3-2 后面板

表 3-2 前面板功能描述

序号	功能
1	REMOTE: 远程通讯开关
	100: RS232C
	010: RS485
2	RS232C/RS485:
	DB9: 2-3-5: RS232C
	DB9: 8-9: RS485

3	LAN 接口
4	USB-VCOM 接口
5	ADDRESS: RS485 地址设置。
6	测试端 B50-B100
7	测试端 B0-B50
8	电源插座: 100VAC~240VAC
9	测试端 B100-B150
10	测试端 B150-B200
11	接地端,GND

3.3 测试端

图 3-3 测试端定义

	注意!
	DB62 为标识的引脚为空脚,无定义。
	由于 CH1~CH50、CH51~CH100、CH101~CH150、CH151~CH200 分别为独立的 50 通道模块,因此
	在通道交界处,需要引出 2 根线分别接入 M1-17 和 M2-43,M2-17 和 M3-43, M3-17 和 M4-43
СН1~	CH50 接线表

表 3-3 (M1) CH1~CH50 接线表

DB62	电池(B)定义	DB62	电池(B)定义	DB62	电池(B)定义
43	B0*(CH1-)	49	B18	55	B36
22	B1	28	B19	34	B37
1	B2	7	B20	13	B38
44	B3	50	B21	56	B39
23	B4	29	B22	35	B40
2	B5	8	B23	14	B41
45	B6	51	B24	57	B42
24	B7	30	B25	36	B43
3	B8	9	B26	15	B44
46	B9	52	B27	58	B45
25	B10	31	B28	37	B46
4	B11	10	B29	16	B47
47	B12	53	B30	59	B48
26	B13	32	B31	38	B49

5	B14	11	B32	17	B50+ (B51-)
48	B15	54	B33		
27	B16	33	B34		
6	B17	12	B35		

表 3-4 (M2) CH51~CH100 接线表

DB62	电池(B)定义	DB62	电池(B)定义	DB62	电池(B)定义
43	B50(CH51-)	49	B68	55	B86
22	B51	28	B69	34	B87
1	B52	7	B70	13	B88
44	B53	50	B71	56	B89
23	B54	29	B72	35	B90
2	B55	8	B73	14	B91
45	B56	51	B74	57	B92
24	B57	30	B75	36	B93
3	B58	9	B76	15	B94
46	B59	52	B77	58	B95
25	B60	31	B78	37	B96
4	B61	10	B79	16	B97
47	B62	53	B80	59	B98
26	B63	32	B81	38	B99
5	B64	11	B82	17	B100+ (B101-)
48	B65	54	B83		
27	B66	33	B84		
6	B67	12	B85		

表 3-5 (M3) CH101~CH150 接线表

DB62	电池(B)定义	DB62	电池(B)定义	DB62	电池(B)定义
43	B100(CH101-)	49	B118	55	B136
22	B101	28	B119	34	B137
1	B102	7	B120	13	B138
44	B103	50	B121	56	B139
23	B104	29	B122	35	B140
2	B105	8	B123	14	B141
45	B106	51	B124	57	B142
24	B107	30	B125	36	B143
3	B108	9	B126	15	B144
46	B109	52	B127	58	B145
25	B110	31	B128	37	B146
4	B111	10	B129	16	B147
47	B112	53	B130	59	B148
26	B113	32	B131	38	B149
5	B114	11	B132	17	B150+ (B151-)
48	B115	54	B133		
27	B116	33	B134		
6	B117	12	B135		

表 3-6 (M4) CH151~CH200 接线表

DB62	电池(B)定义	DB62	电池(B)定义	DB62	电池(B)定义
43	B150(CH151-)	49	B168	55	B186
22	B151	28	B169	34	B187
1	B152	7	B170	13	B188
44	B153	50	B171	56	B189
23	B154	29	B172	35	B190
2	B155	8	B173	14	B191
45	B156	51	B174	57	B192
24	B157	30	B175	36	B193
3	B158	9	B176	15	B194
46	B159	52	B177	58	B195
25	B160	31	B178	37	B196
4	B161	10	B179	16	B197
47	B162	53	B180	59	B198
26	B163	32	B181	38	B199
5	B164	11	B182	17	B200
48	B165	54	B183		
27	B166	33	B184		
6	B167	12	B185		

3.4 上电启动

3.4.1 开机

打开电源开关,电源指示灯点亮,仪器进入正常工作状态。

3.4.2 预热

预热时间:为了达到指定的准确度,仪器需要预热至少15分钟。

3.4.3 运行状态

仪器开机后, 立即进入内部触发模式, 仪器将不间断对所有通道进行测量:

图 3-4 工作指示灯定义

*TRG	STATUS	

*TRG 指示灯:

所有通道测量一次,*TRG 指示灯将闪烁一次。

STATUS 指示灯:

- 1. 在开机自检时,如果自检错误,STATUS 将点亮。
- 2. 正常工作状态,触发方式修改为总线(BUS)触发后,STATUS将点亮。

4. 远程通讯

您将了解到以下内容:

- 介绍 RS-232 接口
- ▶ RS-232 连接。
- 选择波特率。
- 软件协议。

仪器使用 RS-232 接口(标准配置)与计算机进行通信,完成所有仪器功能。通过标准 SCPI 命令,用户 还可以方便地编制各种适合自身的采集系统。

4.1 USB-VCOM

仪器标配 USB2.0 通讯接口,为了上位机编程方便,我们将自动在 Windows 系统里虚拟为一个串口, 在 Windows 10/Windows11 下,系统自动安装驱动程序。 低版本的 Windows,可能需要自行安装驱动程序。

● 注意!● Windows7/XP 用户需要自行安装驱动程序,安装方法请与我公司 FAE 联系。

USB-VCOM 仍是使用 USB2.0 的传输速率进行通讯,不受串口波特率限制,用户将波特率设置为任意 波特率,例如: 115200bps 即可。

USB-VCOM 开机自动开启,后续无需设置任何参数。

4.2 局域网接口(LAN)

仪器内置百兆局域网(LAN)接口。LAN接口开机自动开启。 LAN在出厂时默认设置如下: IP:192.168.1.175端口:1000 子网掩码:255.0.0.0 网关:192.168.1.1

用户可以使用 USB-VCOM/LAN/RS232 接口,通过指令进行修改。

4.3 RS-232C

RS-232 是目前广泛采用的串行通讯标准,也称为异步串行通讯标准,用于实现计算机与计算机之间、计算机与外设之间的数据通讯。RS为"Recommended Standard"(推荐标准)的英文缩写,232 是标准 号,该标准是美国电子工业协会(EIA)1969 年正式公布的标准。 最常用的 RS-232 信号如表所示: 表 4-1 RS-232 标准的最小子集

信号	符号	9 芯连接器引脚号
发送数据	TXD	3
接收数据	RXD	2
接地	GND	5

4.3.1 RS232C 连接

RS-232 串行接口可以和控制器(例如: 电脑或工控机)的串行接口通过 3 芯 DB-9 电缆进行互连。

仪器使用公头 DB9 与电脑通讯,必须使用 2-3 交叉的双母头电缆。

由于 DB9 的 8/9 脚复用 RS485,因此仅可使用 3 线的 DB9 电缆。

图 4-1 后面板上 DB-9 插座

为避免电气冲击,在插拔连接器时,建议关闭仪器电源。

4.3.2 默认的通信设置:

传输方式: 含起始位和停止位的全双工异步通讯

数据位: 8位

停止位: 1位

校验位: 无

4.3.3 后面板设置为 RS-232C 通讯接口

RS232C 必须在后面板 REMOTE 拨码开关位置如下图设置。

图 4-2 后面板上的远程控制 RS232C 拨码开关位置

- 1. 拨码开关设置后,需要在下次启动后生效。
- 2. RS232C 接口支持 SCPI/MODBUS 两种协议,需要使用通讯指令进行切换,设置好的通讯协议会 自动保存便于下次开机使用。

4.4 RS-485 连接

仪器标配 RS485 接口并同时支持安柏增强 SCPI 和 ModbusRTU 协议。

RS485 是一种支持多机通讯的通讯接口,可以通过一台主机与多台从机并接在一起。 详细的 RS485 规范,不作为本用户手册的说明重点,请参考

https://en.wikipedia.org/wiki/RS-485

引脚	功能
8	RS485-A(+)
9	RS485-B(-)

4.4.1 后面板设置为 RS-485 通讯接口

RS485C 必须在后面板 REMOTE 拨码开关位置如下图设置。

图 4-3 后面板上的远程控制 RS485 拨码开关位置

- a. 拨码开关设置后,需要在下次启动后生效。
- b. RS485 接口支持 SCPI/MODBUS 两种协议, 需要使用通讯指令进行切换, 设置好的通讯协议会自动保存便于下次开机使用。

4.5 通讯协议

4.5.1 SCPI 语言

SCPI-Standard Commands for Programmable Instruments(可程控仪器标准命令) 是安柏仪器采用 的一种用于测试仪器的通用命令集。SCPI 亦称为 TMSL-Test and Measurement System Language (测试系统语言),至今已被测试设备制造商广泛采用。 安柏增强 SCPI 通讯协议可以支持 RS485 多机通讯。 使用 Windows 操作系统,建议使用 SCPI。

 仪器内置命令解析器负责用户各种命令格式解析。由于命令解析器依据 SCPI 协议,但并不完全 与 SCPI 一致,请开始工作之前仔细阅读"设置与 SCPI 命令参考"一章。

 由于 SCPI 协议对于电脑端上位机比较易用,同时为了防止设置了错误通讯协议造成无法通讯, 仪器的 USB-VCOM 和 LAN 接口只支持 SCPI 协议,通过指令切换的通讯协议仅对 RS232 和 RS485 接口有效。

5.设置和 SCPI 命令参考

本章包括以下几方面的内容:

- 命令解析器——了解命令解析器的一些规则。
- 命令语法——命令行的书写规则
- 查询语法——查询命令的书写规则
- 查询响应——查询响应的格式
- 命令参考

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

5.1 命令串解析

主机可以发送一串命令给仪器, 仪器命令解析器在捕捉到结束符或是 20ms 时间内无输入后开始解析。

例如:

AAA:BBB CCC;DDD EEE;:FFF

合法的命令串:

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

5.1.1 命令解析规则

- 1. 命令解析器只对 ASCII 码数据进行解析和响应。
- 2. 在收到结束符后开始命令解析。(结束符可以在<系统配置>页面里设置)
- 3. 如果没有收到结束符,命令解析器会在等待 20ms 未收到字符后开始解析命令。
- 如果指令握手打开,命令解析器在每接收到一个字符后,立即将该字符回送给主机,主机 只有接收到这个回送字符后才能继续发送下一个字符。
- 5. 命令解析器在解析到错误后,立即终止解析,当前指令作废。
- 6. 命令解析器在解析到查询命令后,终止本次命令串解析,其后字符串被忽略。
- 7. 命令解析器对命令串的解析不区分大小写。
- 8. 命令解析器支持命令缩写形式,缩写规格参见之后章节。

5.1.2 符号约定和定义

本章使用了一些符号,这些符号并不是命令树的一部分,只是为了能更好的对命令串的理解。

标志	说明
<>	尖括号中的文字表示该命令的参数,例如:
	<float> 代表浮点数参数</float>
	<integer>代表整数参数</integer>
[]	中括号中文字表示可选命令,例如:
	COMP[:STAT] ON = COMP ON
{}	大括号中的参数表示单选项,例如:
	FUNC:RATE {SLOW,MED,FAST} 参数是其中一项
大写字母	命令的缩写形式
	空格字符,表示一个空格,仅用于阅读需要。

5.1.3 命令树结构

对 SCPI 命令采用树状结构的,可向下三级(注:此仪器的命令解析器可向下解析任意层),在这里最高级称为子系统命令。只有选择了子系统命令,该其下级命令才有效,SCPI 使用冒号(:)来分隔高级命令和低级命令。

图 5-1 命令树结构

ROOT:CCC:DDD ppp ROOT 子系统命令 CCC 第二级 DDD 第三级 ppp 参数

5.2 命令和参数

一条命令树由 命令和【参数】 组成,中间用1个空格(ASCII: 20H)分隔。

举例说明

<u>AAA:BBB</u>□1.234 命令 [参数]

5.2.1 命令

命令字可以是长命令格式或缩写形式,使用长格式便于工程师更好理解命令串的含义;缩写形式适合书 写。

5.2.2 参数

- 1. 单命令字命令,无参数。
 - 例如: AAA:BBB
- 2. 参数可以是字符串形式,其缩写规则仍遵循上节的"命令缩写规则"。
- 如: AAA:BBB口1.23
- 3. 参数可以是数值形式

<integer></integer>	整数 123, +123, -123
<float></float>	任意形式的浮点数:
	定点浮点数:1.23, -1.23
	科学计数法表示的浮点数:1.23E+4,-1.23e-4
	倍率表示的浮点数:1.23k,1.23MA,1.23G,1.23u
<scifloat></scifloat>	科学计数法表示的浮点数: 1.2345E+04 表示 1.2345×104

表 5-1 倍率缩写

数值	倍率	
1E15 (PETA)	PE	
1E12 (TERA)	Т	
1E9 (GIGA)	G	
1E6 (MEGA)	MA	
1E3 (KILO)	К	
1E-3 (MILLI)	М	特别注意,代表 m
1E-6 (MICRO)	U	
1E-9 (NANO)	N	
1E-12 (PICO)	Р	
1E-15 (PEMTO)	F	
1E-18 (ATTO)	А	

由于 SCPI 不区分大小写,因此倍率单位的写法与标准名称不同,例如:

"1M"表示为1毫,而不是1兆

"1MA"表示为1兆

5.2.3 分隔符

仪器命令解析器只接收允许的分隔符,除此之外的分隔符命令解析器将产生"Invalid separator(非法分割符)"错误。这些分隔符包括:

```
; 分号,用于分隔两条命令。
例如:AAA:BBB 100.0;CCC:DDD
: 冒号,用于分隔命令树,或命令树重启动。
例如:AAA:BBB:CCC 123.4;:DDD:EEE 567.8
? 问号,用于查询。
例如:AAA?
으 空格,用于分隔参数。
例如:AAA:BBB□1.234
```

5.2.4 错误码

昔误	码		
	对应的错误码如下:		
	错误码	说明	
	*E00	No error	无错误
	*E01	Bad command	命令错误
	*E02	Parameter error	参数错误
	*E03	Missing parameter	缺少参数
	*E04	buffer overrun	缓冲区溢出
	*E05	Syntax error	语法错误
	*E06	Invalid separator	非法分隔符
	*E07	Invalid multiplier	非法倍率单位
	*E08	Numeric data error	数值错误
	*E09	Value too long	数字太长
	*E10	Invalid command	无效指令

*E11 Unknow error 未知错误

5.3 SCPI 多机通讯

使用安柏增强型 SCPI 通讯协议,可以支持多机通讯,所有安柏生产的配备 RS485 接口的仪器,都可以 透过 RS485 接口进行多机通讯。 多机通讯指令: ADDRess <No>;;<SCPI 指令>

例如: ADDR 2;:IDN?

获取站号2的版本信息。

5.4 命令参考

所有命令都是按子系统命令顺序进行解释,下面列出了所有子系统

• FETCh?

TRG

• TRIGger

- SAMPle
- LAN
- UART
- IDN?
- ERRor

内部触发(INT)下,获取实时测量数据

总线触发(BUS)下,触发一次测量并返回测量结果

设置触发模式

- 采样子系统,设置采样速率和市电工频
- 局域网配置子系统
- 系统配置子系统
- 仪器信息查询子系统
- 错误信息子系统

5.5 TRIGger 触发设置

图 5-2 TRIGger 子系统树

TRIGger	:SOURce	{INT,,BUS }	触发源选择
	TRIGger 用来设置触发源。		

5.5.1 TRIGger:SOURce

TRIG:SOUR 用来设置触发源。

命令语法	TRIGger:SOURce {INT,BUS}		
例如	发送> TRIG:SOUR BUS //设置为总线触发模式。		
查询语法	TRIG:SOUR?		
查询响应	{INT,BUS}		

5.6 SAMPle 测试速度设置

SAMPle 采样子系统用来设置测试速度和市电工频。

图 5-3 SAMPle 子系统树

SAMPle	:SPEED	{SLOW,MED,FAST,ULTRa }	测试速度设置
	:RATE		
	:FILTER	{50Hz/50, 60Hz/60}	工频设置
	:LINE		

慢速:2次/秒@全通道,测量周期 500ms 中速:4.6次/秒@全通道,测量周期 217ms 快速:27次/秒@全通道,测量周期 37ms 高速:105次/秒@全通道,测量周期 9.5ms

SAMPLE 子系统设置的参数不会存储到仪器文件中。 仪器开机,采样速率将设置为慢速,工频为 50Hz。

5.6.1 SAMPle[:SPEED(RATE)] 测试速度设置

注意:

SAMPLE[:SPEED] 或 SAMP[:RATE] 用来设置测量速度

命令语法	SAMPle[:SPEED] {SLOW,MED,FAST,ULTRa}				
	SAMPle[:RATE] {SLOW,MED,FAST,ULTRa}				
参数	其中, {SLOW,MED,FAST,ULTRa}				
	SLOW 慢速				
	MED 中速				
	FAST 快速				
	ULTRa 高速				
例如	发送> SAMP:RATE FAST //快速				
	发送> SAMP SLOW				
查询语法	SAMP?				
	SAMP:RATE?				
	SAMP:SPEED?				
查询响应	{SLOW,MED,FAST,ULTR}				
例如	发送> SAMP?				
	返回> FAST				

5.6.2 SAMPle:FILTER(LINE) 工频设置

SAMPle:FILTER 或 SAMP:LINE 用来设置市电工频。

命令语法	SAMPle:FILTER {50Hz,50,60Hz,60}		
	SAMPle:LINE {50Hz,50,60Hz,60}		
例如	发送> SAMP:LINE 60 //设置为 60Hz		
	发送> SAMP:LINE 60Hz		
查询语法	SAMPle:FILTER?		
	SAMPle:LINE?		
查询响应	{50Hz,60Hz}		

5.7 LAN 局域网设置

注意:

LAN 子系统用来设置与局域网通讯有关的参数,包括 IP 地址、端口、子网掩码和网关。这些设置必须与 当前局域网匹配才能正确通讯。

1

1. 建议使用仪器 USB-VCOM 通讯接口进行局域网设置, 仅需简单使用串口调试助手发送指令即可进 行修改。调试助手可以在安柏官网 https//www.anbai.cn 中免费下载。

24 AT4050/40100/40150/40200 用户手册

2.	如果使用 LAN 接口进行修改,需要将网线点对点插入电脑网口上,并按下列设置:
	IP 地址:192.168.1.1,
	子网掩码设置为 255.255.255.0,
	网关设置为 192.168.1.1,
	DNS 设置为自动获取,或设置为 192.168.1.1
	设置完成后使用网络调试助手 NetAssist 输入指令进行修改。
	NetAssist 为免费的网络调试助手,网络上可轻松下载。

图 5-4 LAN 设置

?	<ip>:<port> <net mask=""> <gateway></gateway></net></port></ip>	查询当前网络配置
:ip	<###.###.###.###>	IP 地址设置
:port	<1~65535>	端口设置
:gate	<###.###.###.###>	网关设置
:gw		
:mask	<###.###.###.###>	子网掩码设置
:reset		恢复出厂设置
	? :ip :port :gate :gw :mask :reset	<pre>? <ip>:<port> <net mask=""> <gateway> :ip <###.###.#############################</gateway></net></port></ip></pre>

5.7.1 LAN? 查询当前仪器局域网设置

命令语法	LAN?
查询响应	<ip>:<port> <gateway> <net mask=""></net></gateway></port></ip>
例如	发送> LAN?
	返回> 192.168.1.175:1000 192.168.1.1 255.255.255.0

5.7.2 LAN:IP 设置 ip 地址

IP 地址必须与当前局域网路由器地址在同一网段中。

命令语法	LAN:IP <###.###.###.###>	
参数	ip 地址格式:	
	192.168.0.100	
	10.0.0100	
例如	发送> LAN:IP 192.168.0.168	
查询语法	LAN:IP?	
查询响应	<ip< td=""></ip<>	
例如	发送> LAN:IP?	
	返回> 192.168.0.168:1000 //IP + 端口	

5.7.3 LAN:PORT 设置端口

命令语法	LAN:PORT <1~65535>
参数	<1~65535>
例如	发送> LAN:PORT 1235
查询语法	LAN:PORT?
查询响应	<1~65536>
例如	发送> LAN:PORT?
	返回> 1235 //端口
1	端口通常不需要更改,默认 1000 即可。

5.7.4 LAN:GATE 设置网关地址

带路由器局域网环境,请输入路由器地址。

可以通过局域网中的正常工作的电脑上进行查看本地局域网配置:

图 5-5 查看当前局域网环境-默认网关

C:\WINDOWS\system32\cmd.exe ×	+ ~	
Microsoft Windows [版本 10.0 (c) Microsoft Corporation。伢	.26120.1542] R留所有权利。	
C:\Users\>ipconfig /all		
无线局域网适配器 WLAN:		
连接特定的 DNS 后缀 描述 物理地址	· · · · · · · · · · · · · · · · · · ·	el(R) Wi-Fi 6E AX211 160MHz .168.0.139(首选) .255.255.0 4年9月16日 8:31:15 4年9月16日 11:31:19 .168.0.1 .168.0.1 33093
DNS 服务器 TCPIP 上的 NetBIOS:192:已启	.168.0.1

命令语法	LAN:GATE <###.####.####>
	LAN:GW <###.###.####.###>
参数	网关地址格式:
	192.168.0.1
	10.0.0.1
例如	发送> LAN:GATE 192.168.0.1 //必须是路由器地址
	发送> LAN:GW 192.168.0.1
查询语法	LAN:GATE?
查询响应	<网关地址>
例如	发送> LAN:GATE?
	返回> 192.168.0.1

5.7.5 LAN:MASK 设置子网掩码

查看正常工作的电脑上子网掩码,输入到仪器中。

图 5-6 查看当前局域网环境-子网掩码

局域网适配器 WLAN:	
重接特定的 DNS 后缀:	
苗述 Intel(R) Wi-Fi 6E AX211 160	MHz
カ理地址	
HCP 已启用 是	
自动配置已启用............ 是	
⊾地链接 IPv6 地址.......:	
Pv4 地址	
2网掩码	
夾得租约的时间	
且约过期的时间 2024年9月16日 11:31:19	
犬认网关...............192.168.0.1	
HCP 服务器 192.168.0.1	
HCPv6 IAID 87033093	
HCPv6 客户端 DUID:	
NS 服务器 192.168.0.1	
CPIP 上的 NetBIOS:已启用	

命令语法	LAN:MASK <###.###.###.###>
参数	子网掩码格式:
	255.255.255.0
	255.0.0.0
例如	发送> LAN:MASK 255.255.255.0
查询语法	LAN:MASK?
查询响应	<子网掩码>
例如	发送> LAN:MASK?
	返回> 255.255.255.0

5.8 RS232/RS485 通讯设置

UART 通讯设置可以设置 RS232C/RS485 通讯接口使用的波特率和通讯协议。

此处设置的波特率和通讯协议仅针对 RS232C/RS485 接口有效。 USB-VCOM 自适应波特率,不受此设置影响。 USB-VCOM/LAN 接口始终使用 SCPI 协议,以防止设置错误,而无法建立通讯。

图 5-7 UART 设置树

UART	BAUD	<9600,19200,38400,57600,115200>	波特率设置
	PROTocol	<scpi,modbus></scpi,modbus>	通讯协议设置

5.8.1 波特率设置【BAUD】

命令语法	UART:BAUD <9600,19200,38400,57600,115200>
参数	<9600,19200,38400,57600,115200>
	通常电脑端上位机设置为 115200。
	PLC 端建议 9600~38400
例如	发送> UART:BAUD 115200
查询语法	UART:BAUD?
查询响应	<9600,19200,38400,57600,115200>
例如	发送> UART:BAUD?
	返回> 115200
<u> </u>	在未知当前仪器设置的波特率, 使用 RS232/RS485 发送此指令将无法正确响应。此时使用 USB 接口进
	行查询或重新设置。

设置的波特率将自动保存在仪器中,便于下回开机使用。

5.8.2 通讯协议设置【PROTocol】

命令语法	UART:PROTocol <scpi,modbus></scpi,modbus>
参数	< SCPI,MODBUS>
	通常电脑端上位机使用 SCPI 通讯协议比较容易编程。
	PLC 端建议 MODBUS 协议。
例如	发送> UART:PROT SCPI
查询语法	UART:PROT?
查询响应	<scpi,modbus></scpi,modbus>
例如	发送> UART:PROT?
	返回> SCPI
-	仪器出厂默认为 SCPI 协议,如果需要更改通讯协议,建议使用 USB/LAN 进行预先设置。
<u> </u>	通讯协议设置将会自动保存。

5.9 获取测量数据【FETCh?】

在内部触发模式下,安装设置的测量速度,不停循环测量所有通道,每次测量完成后会将测量结果保存 在内部单缓冲区中,等待上位机发送 FETCh?指令来返回。

由于内部触发,测量不间断,每次接收到 FETCh? 指令,将是上一次的测量结果。 如果仪器安装在自动化设备上,有多工位的情况下,务必在电池接触可靠后,至少延时 2 个测量周期后 发送 FETCh?指令。 请参考采样速率:

 慢速:
 2次/秒@全通道,测量周期 500ms

 中速:
 4.6次/秒@全通道,测量周期 217ms

 快速:
 27次/秒@全通道,测量周期 37ms

 高速:
 105次/秒@全通道,测量周期 9.5ms

通常,如果用于自动化设备测量,使用总线触发模式,发送 TRG 进行同步并且测量一次。

数据格式:

+1.00001, +1.00002, +1.00001, +1.00003, +1.00001,..... CH1 CH2 CH3 CH4 CH5 每个通道以逗号(,)分割。 AT4050 CH1~CH50 AT40100 CH1~CH100 AT40150 CH1~CH150 AT40200 CH1~CH200

```
使用 C# 语言使用字符串分割函数可以非常简单的分割成数组:
string[] array = sFetch.Split(',');
double[] fValue = new double[array.Length];
```


注意:

如果数据返回+9999.0,代表当前通道异常。

图 5-8 FETC?子系统树

FETCh?	<无参数>
	{SLOW,MED,FAST,ULTRa}

查询语法	FETCh?
	FEECh? {SLOW,MED,FAST,ULTRa}
参数	无参数:直接获取测量结果
	{SLOW, MED, FAST, ULTRa} 获取测量结果,并修改测量速率。
例如	发送>FETC? //获取测量结果
	发送>FETC? FAST //获取测量结果,并将测量速率修改为快速。
	返回> +1.00001, +1.00002, +1.00001, +1.00003, +1.00001, //数据总数与通道数量一致
注意	在总线触发模式下,将始终返回最后一次触发的测量结果。
	数据返回的每一帧数据长度都相同。

5.10 *TRG 触发并返回测量结果子系统

*TRG 子系统用来触发一次测量,并在测量完成后返回测量结果。

5.11 IDN? 子系统

图 5-9 IDN? 子系统树

IDN?	查询系统信息		
	IDN?子系统用来返回仪器的版本号。		
查询语法	IDN?		
查询响应	< Manufacturer>, <model>,<sn>,<revision></revision></sn></model>		
例如	发送> IDN?		
	返回> APPLENT,AT40200,0000000,A103		

5.12 ERRor 子系统

错误子系统用来获取最近一次发生错误的信息

查询语法:	ERRor?		
查询响应:	Error string		
例如:	发送> ERR? <i><nl></nl></i>		
	返回> no error. <i><nl></nl></i>		
	对应的错误码如下:		
	错误码	说明	

错误码	说明
*E00	No error
*E01	Bad command

Parameter error	
Missing parameter	
buffer overrun	
Syntax error	
Invalid separator	
Invalid multiplier	
Numeric data error	
Value too long	
Invalid command	
Unknow error	

6.Modbus (RTU) 通讯协议

本章包括以下几方面的内容:

- 数据格式——了解 Modbus 通讯格式。
- 功能
- 变量区域
- 功能码

6.1 数据格式

我们遵循 Modbus(RTU)通讯协议,仪器将响应上位机的指令,并返回标准响应帧。

Modbus 必须设置站号。站号使用后面板的 ADDRESS 拨码开关进行设置。

图 6-1 站号设置

后面板上的拨码开关可以设置 1~0xF(15) 共 15 个站号,站号 0 无效。

表 6-1 拨码开关真值表

拨码开关状态	站号(16 进制)	
	1	
	2	
	3	
	4	
	5	
	6	

7
8
9
A
В
С
D
E
F

6.1.2 指令帧

图 6-2 Modbus 指令帧

CRC-16 计算范围

表 6-2 指令帧说明

	至少需要 3.5 字符时间的静噪间隔			
从站地址	1字节			
	Modbus 可以支持 00~0x63 个从站			
	统一广播时指定为 00			
功能码	1字节			
	0x03:读出多个寄存器			
	0x04: =03H,不使用			
	0x06:写入单个寄存器,可以用 10H 替代			
	0x08:回波测试(仅用于调试时使用)			
	0x10: 写入多个寄存器			
数据	指定寄存器地址、数量和内容			
CRC-16	2 字节,低位在前			
	Cyclic Redundancy Check			
	将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码			

至少需要 3.5 字符时间的静噪间隔

6.1.3 CRC-16 计算方法

- 1. 将 CRC-16 寄存器的初始值设为 0xFFFF。
- 2. 对 CRC-16 寄存器和信息的第1 个字节数据进行 XOR 运算,并将计算结果返回 CRC 寄存器。
- 3. 用 0 填入 MSB, 同时使 CRC 寄存器右移 1 位。
- 从 LSB 移动的位如果为"0",则重复执行步骤(3)(处理下1 个移位)。从 LSB 移动的位如果为"1", 则对 CRC 寄存器和 0xA001 进行 XOR 运算,并将结果返回 CRC 寄存器。
- 5. 重复执行步骤(3)和(4),直到移动8位。
- 如果信息处理尚未结束,则对 CRC 寄存器和信息的下1 个字节进行 XOR 运算,并返回 CRC 寄存器,从第(3) 步起重复执行。
- 7. 将计算的结果(CRC 寄存器的值) 从低位字节附加到信息上。

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器。

计算出 CRC-16 数据需要附加到指令帧末尾,例如:1234H:

图 6-3 Modbus 附加 CRC-16 值

CRC-16计算范围

6.1.4 响应帧

()

除非是 00H 从站地址广播的指令,其它从站地址仪器都会返回响应帧。

图 6-4 正常响应帧

图 6-5 异常响应帧

CRC-16 计算范围

表 6-3 异常响应帧说明

从站地址	1字节
	从站地址原样返回
功能码	1字节
	指令帧的功能码逻辑或 (OR) 上 BIT7 (0x80), 例如: 0x03 OR 0x80 = 0x83
错误码	异常代码:

0x01 功能码错误(功能码不支持)
0x02 寄存器错误(寄存器不存在)
0x03 数据错误
0x04 执行错误
2 字节,低位在前
Cyclic Redundancy Check
将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码

6.1.5 无响应

以下情况, 仪器将不进行任何处理, 也不响应, 导致通讯超时。

- 1. 从站地址错误
- 2. 传输错误
- 3. CRC-16 错误
- 4. 位数错误,例如:功能码 0x03 总位数必须为 8,而接受到的位数小于 8 或大于 8 个字节。
- 5. 从站地址为 0x00 时,代表广播地址,仪器不响应。

6.1.6 错误码

表 6-4 错误码说明

错误码	名称	说明	优先级
0x01	功能码错误	功能码不存在	1
0x02	寄存器错误	寄存器不存在	2
0x03	数据错误	寄存器数量或字节数量错误	3
0x04	执行错误	数据非法,写入的数据不在允许范围内	4

6.2 功能码

仪器仅支持以下几个功能码,其它功能码,将响应错误帧。

表 6-5 功能码

功能码	名称	说明
0x03	读出多个寄存器	读出多个连续寄存器数据
0x04	与 0x03 相同	请用 0x03 代替
0x08	回波测试	接收到的数据原样返回
0x10	写入多个寄存器	写入多个连续寄存器

6.3 寄存器

仪器的寄存器数量为 2 字节模式,即每次必须写入 2 个字节,例如:速度的寄存器为 0x3002,数据为 2 字节,数值必须写入 0x0001

数据:

仪器支持以下几种数值:

- 1. 1个寄存器, 双字节(16位) 整数, 例如: 0x64 → 00 64
- 2. 2个寄存器,四字节(32位)整数,例如: 0x12345678 → 12 34 56 78

3. 2个寄存器,四字节(32位)单精度浮点数,3.14 → 40 48 F5 C3

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了浮点数转换器。

6.4 读出多个寄存器

0

图 6-6 读出多个寄存器 (0x03)

从站地均	业 功能代码	读出开始地址	元素数量	CRC-16
	H'03			
1	1	2	2	2 字节

读出多个寄存器的功能码是 0x03.

表 6-6 读出多个寄存器

	名称			说明			
			Ŀ	没有指定 RS485 地址时,默认	没有指定 RS485 地址时,默认为 01		
	0x03	功能码					
			Ŀ	寄存器起始地址,请参考 Mod	dbus 指令集		
		读取寄存	字器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保这			
	0001~006A (106)		06A (106)	些寄存器地址都是存在的,否则将会返回错误帧。			
	CRC-16	校验码					
图 6-7 读出多个寄	F存器(OxO	13)响应帧	<u>ل</u>	·			
	从站地址	功能代码	字节计数	读出数据(元素数量部分)	CRC-16		
	[]				1		
		H'03					
	1	1	1	 0 ~ 212(2X106)	2		

1 1	0~212(2X106)
-----	--------------

名称	名称	说明
	从站地址	原样返回
0x03	功能码	无异常: 0x03
或 0x83		错误码: 0x83
	字节数	=寄存器数量 x 2
		例如:1个寄存器返回 02
	数据	读取的数据
CRC-16	校验码	

2

6.5 写入多个寄存器

图 6-8 写入多个寄存器 (0x10)

从站地址	功能代码	读出开始地址	元素数量	字节计数	写入数据(元素数量部分)	CRC-16
	H'10					
1	1	2	2	1	0~208(2X104)	2

表 6-7 写入多个寄存器

名称	名称	说明
	从站地址	没有指定 RS485 地址时,默认为 01
0x10	功能码	
	起始地址	寄存器起始地址,请参考 Modbus 指令集
	写入寄存器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保这
	0001~0068 (104)	些寄存器地址都是存在的,否则将会返回错误帧。
	字节数	=寄存器数量 x 2
CRC-16	校验码	

图 6-9 写入多个寄存器 (0x10) 响应帧

从站地址	功能代码	写入开始地址	元素数量	CRC-16
	H'10			
1	1	2	2	2字节

名称	名称	说明
	从站地址	原样返回
0x10	功能码	无异常: 0x10
或 0x90		错误码: 0x90
	起始地址	
	寄存器数量	
	CRC-16 校验码	

6.6 回波测试

回波测试功能码 0x08,用于调试 Modbus。

图 6-10 回波测试 (0x08)

指令帧

从站地址	功能代码	固定	值	测试数据	CRC-16
	H'08	H'00	H'00		
1	1	2		2	2字节
响应帧					
从站地址	功能代码	固定	值	测试数据	CRC-16
	H'08	H'00	H'00		
1	1	2		2	2字节
	夕称		送田		

名称	名称	说明
	从站地址	原样返回
0x08	功能码	

固定值	00 00
测试数据	任意数值:例如 12 34
CRC-16 校验码	

例如:

假定测试数据为 0x1234:

指令:	01	08	00 00	12 34	ED 7C(CRC-16)
响应:	01	08	00 00	12 34	ED 7C(CRC-16)

7. Modbus (RTU) 指令集

本章包括以下几方面的内容: 寄存器地址

我公司的"安柏仪器通讯测试工具^{""},里面有 Modbus 通讯调试方法。包含了浮点数转换器。

除非特别说明,以下说明中指令和响应帧的数值都是16进制数据。

7.1 寄存器总览

 \bigcirc

以下列出了仪器使用的所有寄存器地址,任何不在表中的地址将返回错误码 0x02.

表	7-1	寄存器总	览
~ -		1 11 10 10	~0

寄存器		┍╧┑┿╪╴╩┢	名称	数值	说明
地址	数量	字节数			
1000	1	2	读取测量结果: CH1	2 字节有符号整数,单位 mV	只读
1001	1	2	读取测量结果: CH2	2 字节有符号整数,单位 mV	只读
1002	1	2	读取测量结果:CH3	2 字节有符号整数,单位 mV	只读
1031	1	2	读取测量结果: CH50	2 字节有符号整数,单位 mV	只读
1062	1	2	读取测量结果: CH100	2 字节有符号整数,单位 mV	只读
1095	1	2	读取测量结果: CH150	2 字节有符号整数,单位 mV	只读
10C7	1	2	读取测量结果: CH200	2 字节有符号整数,单位 mV	只读
2000	2	4	读取测量结果: CH1	4 字节浮点数,	只读
				字节顺序 CCDDAABB	
2002	2	4	读取测量结果:CH2	4字节浮点数	只读
				字节顺序 CCDDAABB	
2004	2	4	读取测量结果:CH3	4字节浮点数	只读
				字节顺序 CCDDAABB	
2064	2	4	读取测量结果: CH50	4字节浮点数	只读
				字节顺序 CCDDAABB	
20C8	2	4	读取测量结果: CH100	4字节浮点数	只读
				字节顺序 CCDDAABB	

212C	2	4	读取测量结果: CH150	4字节浮点数	只读
				字节顺序 CCDDAABB	
2190	2	4	读取测量结果: CH200	4 字节浮点数	只读
				字节顺序 CCDDAABB	

7.2 获取测量数据

7.2.1 获取测量结果,整数类型【1000】

寄存器 1000~1031 用来获取仪器 CH1~CH50 电压值, 16 位带符号整数,单位 mV。 寄存器 1000~1063 用来获取仪器 CH1~CH100 电压值, 16 位带符号整数,单位 mV。 寄存器 1000~1096 用来获取仪器 CH1~CH150 电压值, 16 位带符号整数,单位 mV。 寄存器 1000~1037 用来获取仪器 CH1~CH200 电压值, 16 位带符号整数,单位 mV。

每个寄存器分别返回1个通道的数据,格式为16位带符号整数。例如: 0x3E8 = 1000mV = 1.000V 寄存器 0x1000 起始的数据分辨率为1mV。 0x1000 寄存器可以有效缩短通讯时间,但分辨率较低。 高精度的数据,可以读取 0x2000 寄存器,数据格式为2位浮点数。

以下指令同时获取所有 50 个通道数据。

1	2	3	4	5	6	7	
01	03	10	00	00)32	C0	DF
从站	读	寄存器		寄存器数量		校验码	

7.2.2 获取测量结果,浮点数类型【2000】

每个通道寄存器占用2个寄存器(4个字节)。

为了 PLC 自动转换方便,字节顺序已经更换为 CCDDAABB 格式。

CH1	2000-2001
CH2	2002-2003
CH3	2004-2005
CH4	2006-2007
CH5	2008-2009
CH6	200A-200B
CH7	200C-200D
CH8	200E-200F
CH50	2063-2064

其它通道以此类推。

指令:

1	2	3	4	5	6	7	
01	03	2000		0064		4FE1	
从站	读	寄存器		寄存器数量		校验码	

8.规格

您将了解到以下内容: 技术指标。 一般规格。 外形尺寸。

8.1 技术指标

下列数据在以下条件下测得: 温度条件: 23°C±5°C 湿度条件: ≤ 65% R.H. 未结露 预热时间: > 30 分钟 校准时间: 12 个月

电压测量准确度	慢速:	0.01% (AT40200A) 0.05%(AT40200)
	中速:	0.01% (AT40200A) 0.05%(AT40200)
	快速:	0.05% (AT40200A) 0.05%(AT40200)
	高速:	0.1% (AT40200A) 0.1%(AT40200)
最小分辨率	0.01mV	
源内阻	2ΜΩ	

8.2 一般规格

测量范围	-5.00000V~+5.00000V			
测试速度	慢速:	2次/秒@全通道		
	中速:	4.6 次/秒@全通道		
	快速:	27 次/秒@全通道		
	高速:	105 次/秒@全通道		
通道数	AT4050/AT40	50A: 50 通道		
	AT40100/AT40	D100A: 100 通道		
	AT40150/AT40150A: 150 通道			
	AT40200/AT40200A: 200 通道			
通道间隔离	500VAC			
触发方式	内部、远程			
接口	USB2.0 接口(VCOM)			
	LAN 百兆局域网接口			
	RS232 接口			
	RS485 接口			
通讯协议	安柏增强 SCPI/ModBus(RTU)			

环境要求	指标	温度 18℃~28℃ 湿度 <65% RH 未结露
	操作	温度 10°C~40°C 湿度 10~80% RH
	储存	温度 0°C~50°C 湿度 10~90% RH
电源要求	电压	100V~240VAC
	保险丝	250V/3A 慢熔(仪器内部安装)
	功率	最大 50VA
	重量	≈3kg

8.3 外形尺寸

(示意图)

图 8-1 外形尺寸

Applent Instruments

-AT40200 系列用户手册- 简体中文版

©2005-2024 版权所有: 常州安柏精密仪器有限公司 Applent Instruments Ltd.